Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis [three-phase inverters]
نویسندگان
چکیده
This paper comprehensively analyzes the relationship between space-vector modulation and three-phase carrier-based pulsewidth modualtion (PWM). The relationships involved, such as the relationship between modulation signals (including zero-sequence component and fundamental components) and space vectors, the relationship between the modulation signals and the space-vector sectors, the relationship between the switching pattern of space-vector modulation and the type of carrier, and the relationship between the distribution of zero vectors and different zero-sequence signal are systematically established. All the relationships provide a bidirectional bridge for the transformation between carrier-based PWM modulators and space-vector modulation modulators. It is shown that all the drawn conclusions are independent of the load type. Furthermore, the implementations of both space-vector modulation and carrier-based PWM in a closed-loop feedback converter are discussed.
منابع مشابه
Space Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters
Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is its complex and time-consuming computations in real-time im...
متن کاملSpace Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters
Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is 
its complex and time-consuming computations in real-time ...
متن کاملDesign and Performance Analysis of 7-Level Diode Clamped Multilevel Inverter Using Modified Space Vector Pulse Width Modulation Techniques
In this paper, a 7-level Diode Clamped Multilevel Inverter (DCMLI) is simulated with three different carrier PWM techniques. Here, Carrier based Sinusoidal Pulse Width Modulation (SPWM), Third Harmonic Injected Pulse Width Modulation (THIPWM) and Modified Carrier-Based Space Vector Pulse Width Modulation (SVPWM) are used as modulation strategies. These modulation strategies include Phase Dispos...
متن کاملAnalysis of Voltage Source Inverters using Space Vector PWM for Induction Motor Drive
The Adjustable Speed Drives (ADS) are generally used in industry. In most drives AC motors are applied. The standard drives used are Induction Motors (IM) and recently Permanent Magnet Synchronous Motors (PMSM) are also used. Developments in power electronics and semiconductor technology have lead to improvements in power electronic systems. Different circuit configurations namely multilevel in...
متن کاملSpace Vector Pulse Width Modulation with Reduced Common Mode Voltage and Current Losses for Six-Phase Induction Motor Drive with Three-Level Inverter
Common-mode voltage (CMV) generated by the inverter causes motor bearing failures in multiphase drives.On the other hand, presence of undesired z-component currents in six-phase induction machine (SPIM) leads to extra current losses and have to be considered in pulse width modulation (PWM) techniques. In this paper, it is shown that the presence of z-component currents and CMV in six phase driv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Industrial Electronics
دوره 49 شماره
صفحات -
تاریخ انتشار 2002